MATH 2060 BC TUTO 1

Def. Let
$$\cdot I \subseteq \mathbb{R}$$
 be an interval
 $\cdot f: I \rightarrow \mathbb{R}$ be a fin on I
 $\cdot c \in I$
 $\cdot The derivative of f at c is given by the limit
 $f'(c) = \lim_{X \rightarrow c} \frac{f(x) - f(c)}{X - c}$
provided this limit exist
 $\cdot In$ this case, we say that f is differentiable at c.
Thm. If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$ (i.e. differentiable at c),
then f is continuous at c.$

Example 1 (36.1 Ex 7)
Suppose that f is diff. at c and that
$$f(c) = 0$$
.
Show that $g(x) := |f(x)|$ is diff. at c iff $f(c) = 0$.
Ans : $\forall x + c$,
 $g(x) - g(c) = (f(x)| - |f(c)|)$
 $x - c = x - c$ ign $(x - c) |x - c|$
 $= sgn(x - c) |f(x) - f(c)|$ since $f(c) = 0$.
Here $sgn(x) = \begin{cases} 1 & if x > 0 \\ -1 & if x < 0 \end{cases}$
Here $sgn(x) = \begin{cases} 0 & if x = 0 \\ -1 & if x < 0 \end{cases}$
Here $sgn(x) - g(c) = \lim_{x \to c^{+}} sgn(x - c) |f(x) - f(c)| = |f'(c)|$
 $x - c = x - c = x - c \end{cases}$
 $f(x) - f(c) = -|f'(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = \lim_{x \to c^{+}} sgn(x - c) |f(x) - f(c)| = -|f'(c)|$
Note $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = \lim_{x \to c^{+}} sgn(x - c) |f(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = \lim_{x \to c^{+}} sgn(x - c) |f(c)| = -|f'(c)|$
Note $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = sint - sgn(x - c) |f(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = sint - sgn(x - c) |f(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = sint - sgn(x - c) |f(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = sint - sgn(x - c) |f(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = sint - sgn(x - c) |f(c)| = -|f'(c)|$
 $\lim_{x \to c^{+}} \frac{g(x) - g(c)}{x - c} = sint - sgn(x - c) |f(c)| = -|f'(c)|$

Example 2. (§ 6.1 Ex10)
Let
$$g: \mathbb{R} \to \mathbb{R}$$
 be defined by
 $g(x) = \begin{cases} x^{5} \sin(\sqrt{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x \neq 0 \end{cases}$
Show that g is diff. for all $x \in \mathbb{R}$.
Also show that g' is not bounded on $[-1, 1]$.
Ans: $x \neq 0$: By chain rule and product rule,
 $g'(x) = 2x \sin(\sqrt{x}) + x^{2} \cos(\sqrt{x})(-2x^{2})$
 $= 2x \sin(\sqrt{x}) - \frac{2}{x} \cos(\sqrt{x})(-2x^{2})$
 $x = 0$: $\lim_{x \to 0} \frac{x(y)}{x-0} = \lim_{x \to 0} x \sin(\frac{1}{x}) = 0$
by Speeze Thm ($1\sin(\frac{1}{x})| \leq 1 \forall x \neq 0$)
So $g'(x) = xivts \forall x \in \mathbb{R}$, i.e. g is diff. $\forall x \in \mathbb{R}$.
For unboundedness, with to find $x_{n} \in [-1,1]$ s.t. $x_{n} \to 0$,
 $\sin(\frac{1}{x^{2}}) = 0$ and $\cos(\frac{1}{x^{2}}) = 1$
Let $x_{n} := \frac{1}{52n\pi\pi}$, $n \in \mathbb{N}$.
Then $5x_{n}^{2}$ satisfies the desired properties and
 $|g'(x_{n})| = |O - 252n\pi + 1| = 252n\pi + \infty$. as $n \to \infty$.

Example 3 (\$6.1 Ex12) If r > 0 is a rational number, let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x):=\begin{cases} x^{r} \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0. \end{cases}$ Determine those values of r for which f'(0) exists. Ans: Note $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x^{r-1} \sin\left(\frac{1}{x}\right)$ Cagel: r>1. Then $|x^{r-1} \sin(\frac{1}{x})| \leq |x|^{r-1} \quad \forall x \neq 0$ and $\lim_{n \to \infty} |x|^{r-1} = 0$ By Squeeze Thm, $f'(0) = \lim_{x \to 0} x^{r-1} \sin(\frac{1}{x}) = 0$. Case2: O<r<1. Take $\chi_n = \frac{1}{2n\pi}$ and $\gamma_n = \frac{1}{2n\pi + \frac{\pi}{2}}$ Then $x_n, y_n \neq O \forall n$ and $x_n, y_n \rightarrow O$ $\begin{array}{cccc} (hen & x_{n}, & y_{n}, & \\ \hline H_{owever}, & X_{n}^{r-1} & fih\left(\frac{1}{x_{n}}\right) = 0 \\ \hline hile & y_{n}^{r-1} & fih\left(\frac{1}{y_{n}}\right) = (2h\pi + \frac{\pi}{2})^{1-r} \left\{ = 1, & r = 1 \\ \hline \to \infty, & r < 1 \end{array}$ By Sequential Criterion, flor= lim xr-1 sin (+) DNE. Conclusion: fio, exists iff r>1 (and rel)

Example 4 (§ 6.) Ex (3)
If f: R → R is diff. at ce R, show that
f(g) = lim (n {f(c+k)-f(c)})
However, show by example that the existence of the
limit of this seq. does not imply the existence of flics
Ans: Since f is diff. at c,

$$\lim_{h\to 0} \frac{f(c+k) - f(c)}{h} = f'(c)$$

Consider the seq Shil, $h_n := \frac{1}{n}$,
we have $h_n \neq 0$ and $\lim_{h\to 0} (h_n) = 0$
By Sequential Criterion for Limit of fins,
 $\lim_{n\to \infty} \frac{f(c+k) - f(c)}{k} = f'(c)$
I.e. $f'(c) = \lim_{h\to \infty} n [f(c+\frac{1}{n}) - f(c)]$
For the counterexample, one may consider
the Dirichlet ficn
 $f(x) := \begin{cases} 1 & \text{if } x \in R_n \\ 0 & \text{if } x \in R_n R_n \end{cases}$
Then $n [f(c+\frac{1}{n}) - f(c)] = 0$
However, $f'(c) DNE$ for any ce R.
Since f is discontinuous everywhere.

Example 5 Let
$$f:(-a, a) \rightarrow \mathbb{R}$$
 with $a > 0$.
Assume f is ets at 0 and s.t. the limit

$$\frac{f(x) - f(\lambda x)}{x} = \lambda \quad (x)$$
exists, where $0 < \lambda < 1$.
 a Show that $f(0)$ exists
 b What happens to the conclusion when $\lambda > 1$.
Ans: a Let $\varepsilon > 0$.
By $(x), = \delta > 0$ s.t. $\forall x \in (-a, a)$ with $0 < |x| < \delta$, we have
 $\lambda - \varepsilon < \frac{f(x) - f(\lambda x)}{x} < \ell + \varepsilon$
Idea: $\frac{f(x) - f(\lambda x) + f(\lambda x) - f(\lambda^* x)}{x} - \frac{1}{f(0)} a_0 n + \infty$
Let $x \in (-a, a)$ with $0 < |x| < \delta$.
Then $0 < |\lambda^* x| \le |x| < \delta$ $\forall n \in N \cup [0]$ since $\lambda \in (0, 1)$,
Hence, $\forall n \in N \cup [0]$,
 $\lambda - \varepsilon < \frac{f(x) - f(\lambda x) - f(\lambda \cdot x^* x)}{x^* x} < \ell + \varepsilon$
 $(\ell - \varepsilon) \Lambda^* < \frac{f(x^* x) - f(\lambda \cdot x^* x)}{x} < \ell + \varepsilon$
So, $\forall N \ge 1$, $\frac{N}{h = 0}$ $(\ell - \varepsilon) \Lambda^* < \sum_{n=0}^{N} \frac{f(\lambda^* x) - f(\lambda \cdot x^* x)}{x} < (\ell + \varepsilon) \Lambda^*$

Letting
$$N \rightarrow \infty$$
, we have $f(x) = \lim_{N \rightarrow \infty} f(x^{N+}x)$ since $f(x) = \frac{1-x}{1-x}$
 $\frac{1-x}{x} = \frac{1-x}{x}$ $\frac{1-x}{1-x}$
So. $\left| \frac{f(x) - f(x)}{x} - \frac{1}{1-x} \right| \leq \frac{c}{1-x}$ whenever $x = \frac{1}{1-x}$
Therefore $f'(x) = \lim_{X \rightarrow 0} \frac{f(x) - f(x)}{x} = \frac{1}{1-x}$
b> If $\lambda > 1$, then $0 < \frac{1}{x} < 1$.
By letting $t = \lambda x$, we have
 $l = \lim_{X \rightarrow 0} \frac{f(x) - f(x)}{x} = \lim_{X \rightarrow 0} \frac{f(\frac{1}{x}) - f(\frac{1}{x})}{x} = -\lambda \lim_{X \rightarrow 0} \frac{f(x) - f(\frac{1}{x})}{x}$
and so $\lim_{X \rightarrow 0} \frac{f(x) - f(\frac{1}{x})}{x} = -\lambda \lim_{X \rightarrow 0} \frac{f(x) - f(\frac{1}{x})}{x}$
By a_{1} , $f'(x) = xists$ and
 $f'(x) = \frac{-\lambda}{1-x}$ for $0 < \lambda < 1$, $\lambda > 1$